Depositional ice nucleation onto crystalline hydrated NaCl particles: a new mechanism for ice formation in the troposphere
نویسندگان
چکیده
Sea-salt aerosol (SSA) particles are ubiquitous in the marine boundary layer and over coastal areas. Therefore SSA have ability to directly and indirectly affect the Earth’s radiation balance. The influence SSA have on climate is related to their water uptake and ice nucleation characteristics. In this study, optical microscopy coupled with Raman spectroscopy was used to detect the formation of a crystalline NaCl hydrate that could form under atmospheric conditions. NaCl(s) particles (∼1 to 10 μm in diameter) deliquesced at 75.7± 2.5 % RH which agrees well with values previously established in the literature. NaCl(aq) particles effloresced to a mixture of hydrated and non-hydrated particles at temperatures between 236 and 252 K. The aqueous particles effloresced into the non-hydrated form at temperatures warmer than 252 K. At temperatures colder than 236 K all particles effloresced into the hydrated form. The deliquescence relative humidities (DRH) of hydrated NaCl(s) particles ranged from 76.6 to 93.2 % RH. Based on the measured DRH and efflorescence relative humidities (ERH), we estimate crystalline NaCl particles could be in the hydrated form 40–80 % of the time in the troposphere. Additionally, the ice nucleating abilities of NaCl(s) and hydrated NaCl(s) were determined at temperatures ranging from 221 to 238 K. Here, depositional ice nucleation is defined as the onset of ice nucleation and represents the conditions at which the first particle on the substrate nucleated ice. Thus the values reported here represent the lower limit of depositional ice nucleation. NaCl(s) particles depositionally nucleated ice at an average Sice value of 1.11± 0.07. Hydrated NaCl(s) particles depositionally nucleated ice at an average Sice value of 1.02± 0.04. When a mixture of hydrated and anhydrous NaCl(s) particles was present in the same sample, ice preferentially nucleated on the hydrated particles 100 % of the time. While both types of particles are efficient ice nuclei, hydrated NaCl(s) particles are better ice nuclei than NaCl(s) particles.
منابع مشابه
Internally mixed sulfate and organic particles as potential ice nuclei in the tropical tropopause region.
Cirrus clouds are ubiquitous in the tropical tropopause region and play a major role in the Earth's climate. Any changes to cirrus abundance due to natural or anthropogenic influences must be considered to evaluate future climate change. The detailed impact of cirrus clouds on climate depends on ice particle number, size, morphology, and composition. These properties depend in turn on the nucle...
متن کاملIs aerosol formation in cirrus clouds possible?
The recent observation of ultrafine aerosol particles in cirrus clouds has raised the question whether aerosol formation within cirrus clouds is possible, and if so, what mechanisms are involved. We have developed an aerosol parcel model of neutral and charged H2SO4/H2O aerosol processes, including nucleation from the gas phase and loss onto cirrus ice particles. Laboratory thermodynamic data f...
متن کاملBiological ice nucleation initiates hailstone formation
Cloud condensation and ice nuclei in the troposphere are required precursors to cloud and precipitation formation, both of which influence the radiative balance of Earth. The initial stage of hailstone formation (i.e., the embryo) and the subsequent layered growth allow hail to be used as a model for the study of nucleation processes in precipitation. By virtue of the preserved particle and iso...
متن کاملDo atmospheric aerosols form glasses?
A new process is presented by which water soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline) solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular dif...
متن کاملAn aerosol chamber investigation of the heterogeneous ice nucleating potential of refractory nanoparticles
Nanoparticles of iron oxide (crystalline and amorphous), silicon oxide and magnesium oxide were investigated for their propensity to nucleate ice over the temperature range 180–250 K, using the AIDA chamber in Karlsruhe, Germany. All samples were observed to initiate ice formation via the deposition mode at threshold ice super-saturations (RHithresh) ranging from 105% to 140% for temperatures b...
متن کامل